Journal Search Engine
ISSN : 1738-1894(Print)
ISSN : 2288-5471(Online)
ISSN : 2288-5471(Online)
Journal of Nuclear Fuel Cycle and Waste Technology Vol. No. pp.4-4
DOI : https://doi.org/10.7733/jnfcwt.2025.007
DOI : https://doi.org/10.7733/jnfcwt.2025.007
The Current Status of Liquid Fuel and Material Technology Development for Chloride-Based Molten Salt Reactors (MSRs) at KAERI Part I. Liquid Fuel Fabrication and Natural Convection Loop Operation for Corrosion Characteristics
2025-02-10 ;
2025-02-27 ;
2025-03-14
Abstract
The efficient fabrication of uranium-based liquid fuels and the structural integrity of reactor materials are critical challenges for the deployment of chloride-based molten salt reactors (MSRs). As part of KAERI’s ongoing MSR development, this study investigates an optimized uranium chlorination process and a corrosion assessment of candidate structural materials under conditions more closely resembling actual reactor cores. To enhance process efficiency and scalability, metallic uranium was converted into uranium trihydride (UH₃) via hydriding, achieving 34.1% efficiency. UH₃ was chlorinated with ammonium chloride (NH₄Cl), yielding uranium trichloride (UCl₃) with a conversion rate over 98% and purity above 99%, as confirmed by ICP-OES. The UCl₃ was used to fabricate various uranium-based liquid fuels for MSR applications. Simultaneously, the corrosion behavior of SS304, SS316, and Hastelloy-N was evaluated using a natural convection loop filled with a NaCl–MgCl₂ eutectic salt mixture. The system operated for 500 hours at 500–580°C to replicate MSR conditions. Corrosion analysis revealed that SS304 suffered severe degradation, SS316 showed moderate resistance, and Hastelloy-N demonstrated superior stability, although some cold leg samples experienced mass gain due to corrosion product deposition. These findings provide key insights into optimizing liquid fuel synthesis and selecting corrosion-resistant materials for safe, long-term MSR operation.
초록
Figures
Tables
References
JNFCWT
Online Submission
Korean Radioactive
Waste Society (KRS)
Editorial Office
Contact Information
- Tel: +82-42-861-5851, 866-4157
- Fax: +82-42-861-5852
- E-mail: krs@krs.or.kr