Journal Search Engine

View PDF Download PDF Export Citation Korean Bibliography PMC Previewer
ISSN : 1738-1894(Print)
ISSN : 2288-5471(Online)
Journal of Nuclear Fuel Cycle and Waste Technology Vol. No. pp.5-5
DOI : https://doi.org/10.7733/jnfcwt.2024.028

Sorption of Tc(IV) in Saline Solutions – I. Sorption on MX-80 and Granite in Ca-Na-Cl Solutions

Shinya Nagasaki1,*, Zhiwei Zheng1, Jianan Liu1, Jieci Yang1, Tammy (Tianxiao) Yang2
1McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4L7, Canada
2Nuclear Waste Management Organization, 22 St. Clair Ave. East, 4th Floor, Toronto, ON, M4T 2S3, Canada
2024-04-26 ; 2024-05-20 ; 2024-06-13

Abstract

Technetium-99 is identified as an element of interest for the safety assessment of a deep geological repository for used nuclear fuel. The sorption behavior of Tc(IV) onto MX-80 and granite in Ca-Na-Cl solutions of varying ionic strength (0.05 – 1 mol/kgw (m)) and across a pHm range of 4 – 9 was studied in this paper. Sorption of Tc(IV) was found to be independent of ionic strength in the range of 0.05 to 1 m for both MX-80 and granite. Sorption of Tc(IV) on MX-80 increased with pHm from 4 to 7 and then decreased with pHm from 8 to 9. Sorption of Tc(IV) on granite gradually increased with pHm from 4 to 8 and then became almost constant or slightly decreased with pHm from 8 to 9. A 2 site protolysis non-electrostatic surface complexation and cation exchange sorption model successfully simulated sorption of Tc(IV) on MX-80 and granite. Optimized values of surface complexation constants (log K0) are proposed

초록


     

    Figures

    Tables

    References

    Editorial Office
    Contact Information

    - Tel: +82-42-861-5851, 866-4157
    - Fax: +82-42-861-5852
    - E-mail: krs@krs.or.kr

    SCImago Journal & Country Rank