Journal Search Engine

View PDF Download PDF Export Citation Korean Bibliography PMC Previewer
ISSN : 1738-1894(Print)
ISSN : 2288-5471(Online)
Journal of Nuclear Fuel Cycle and Waste Technology Vol.5 No.1 pp.65-78
DOI :

지하 동굴식 중-저준위 방사성 폐기물 처분장의 환기시스템 고찰

A Study on Ventilation System of Underground Low-Intermediate Radioactive Waste Repository

Young-MIn Kim, O-Sang Kwon, Chan-Hoon Yoon, Sang-Ki Kwon, Jin Kim

Abstract

The pollutants (Rn, CH, CO, HS, radioactive gas from radiolysis) were generated from the process of construction and operation of underground repository, and after disposal of low-intermediate radioactive waste inside there must be controlled by a ventilation system to distribute them in area where enough air is supported. Therefore, a suitable technical approach is needed especially at an underground repository that is equipped with many entry tunnels, storage tunnels, exhaust-blowing tunnels, and vertical shafts in complicated network form. For the technical approach of such a ventilation system, WIPP (Waste Isolation Pilot Plant) in U. S and SFR (Slutforvar for Reaktorafall) low-intermediate radioactive waste repository in Sweden were selected as the models, for calculating the required air quantity, organizing a ventilation network considering cross section, length, surface roughness of the air passage, and describing a calculation of resistance of each circuit. Based on these procedures, a best suited ventilation system was completed with designing proper capacity of fans and operating plan of vertical shafts. As a result of comparing the two repositories based on the geometry dimensions and ventilation facility equipment operation, more parallel circuit as in WIPP, brought decrease in resistance for entire system leading to reduce of operating costs, and the larger cross-sectional area of the SFR, the greater the percentage of disposal capacity. Accordingly, the mixture of parallel circuit of WIPP repository for reducing resistance and SFR repository formation for enlargement of disposal capacity would be the most rational and efficient ventilation system.

 

Reference

Editorial Office
Contact Information

- Tel: +82-42-861-5851, 866-4157
- Fax: +82-42-861-5852
- E-mail: krs@krs.or.kr

SCImago Journal & Country Rank