Journal Search Engine
ISSN : 1738-1894(Print)
ISSN : 2288-5471(Online)
ISSN : 2288-5471(Online)
고준위 방사성 폐기물 처분 시스템 실증 실험용 KENTEX 장치에서의 열-수리-역학 연동현상 해석
Coupled T-H-M Processes Calculations in KENTEX Facility Used for Validation Test of a HLW Disposal System
Abstract
A coupled T-H-M(Thermo-Hydro-Mechanical) analysis was carried out for KENTEX (KAERI Engineering-scale T-H-M Experiment for Engineered Barrier System), which is a facility for validating the coupled T-H-M behavior in the engineered barrier system of the Korean reference HLW(high-level waste) disposal system. The changes of temperature, water saturation, and stress were estimated based on the coupled T-H-M analysis, and the influence of the types of mechanical constitutive material laws was investigated by using elastic model, poroelastic model, and poroelastic-plastic model. The analysis was done using ABAQUS, which is a commercial finite element code for general purposes. From the analysis, it was observed that the temperature in the bentonite increased sharply for a couple of days after heating the heater and then slowly increased to a constant value. The temperatures at all locations were nearly at a steady state after about 37.5 days. In the steady state, the temperature was maintained at at the interface between the heater and the bentonite and at about at the interface between the bentonite and the confining cylinder. The variation of the water saturation with time in bentonite was almost same independent of the material laws used in the coupled T-H-M processes. By comparing the saturation change of T-H-M and that of H-M(Hydro-Mechanical) processes using elastic and poroelastic material mod31 respectively, it was found that the degree of saturation near the heater from T-H-M calculation was higher than that from the coupled H-M calculation mainly because of the thermal flux, which seemed to speed up the saturation. The stresses in three cases with different material laws were increased with time. By comparing the stress change in H-M calculation using poroelasetic and poroelasetic-plastic model, it was possible to conclude that the influence of saturation on the stress change is higher than the influence of temperature. It is, therefore, recommended to use a material law, which can model the elastic-plastic behavior of buffer, since the coupled T-H-M processes in buffer is affected by the variation of void ratio, thermal expansion, as well as swelling pressure.
Coupled THM process, Bentonite saturation, Material law, HLW repository, 열-수리-역학 연동현상, 벤토나이트 포화, 고준위 폐기물 처분, 물성법칙
Reference
JNFCWT
Online Submission
Korean Radioactive
Waste Society (KRS)
Editorial Office
Contact Information
- Tel: +82-42-861-5851, 866-4157
- Fax: +82-42-861-5852
- E-mail: krs@krs.or.kr